
FAILURE OF COMPOSITE STRUCTURES IN THE PRESENCE OF
CREEP

Branca F. Oliveira
João R. Masuero
Guillermo J. Creus
CEMACOM/UFRGS, 90035-190 Porto Alegre, RS, Brasil

Abstract. The present paper describes some results on the modeling of failure behavior of
composite laminates in the presence of large displacements and creep. It follows the research
of Marques and Creus (1994), and uses part of its formulation and computer code. We
reproduce here the essentials of that formulation and discuss in some detail the procedure
used for the analysis of viscoelastic progressive failure of plates and shells. Illustrative
examples are included showing the performance of the code.
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1. INTRODUCTION

Many composite materials of polymeric base show a viscoelastic behavior that is
enhanced by changes of temperature or humidity content (Marques and Creus, 1994). These
constitutive characteristics influence the failure behavior, particularly when nonlinear
geometrical effects are important, and represent one of the limiting design parameters for
advanced composite structures expected to operate for long periods of time, as in civil
engineering applications (Barbero, 1998).

The present work continues the research of Marques and Creus (1994), and uses part of
its formulation and basic code. For the sake of completeness, we reproduce here the
essentials of that paper. Then, the formulation needed for the numerical analysis of
viscoelastic progressive failure of composite laminates is given, together with illustrative
examples. In Section 2 we resume the geometrically nonlinear formulation, that follows
Bathe (1996). In Section 3 we describe the viscoelastic formulation. In Section 4 we discuss
the failure criterion used (the Maximum Strain Criterion) and the algorithm for stiffness
degradation during progressive failure. Failure criteria are described in many books, as for
example in Vinson (1993); a critical discussion is given in Hart-Smith (1993). To be used
with linear viscoelasticity, the Maximum Strain Criterion is the most convenient. Degradation
criteria are described for example in Lee (1982), Tolson and Zabaras (1991) and Cheung et
al. (1995); we adopted this formulation, with small changes.

In Section 5 we give some details of the numerical implementation, including the
incremental-iterative strategies. We use an incremental state variable formulation which one



is general and efficient. It can be extended to the cases of aging viscoelasticity (Masuero and
Creus, 1993) and to non-linear viscoelasticity (Masuero and Creus, 1993) and can be as
efficient as Laplace transform methods (Pacheco and Creus, 1997).

We present examples aimed to check the accuracy of the code. In Example 1 we check
the nonlinear geometric and viscoelastic deformations algorithms against a closed solution. In
example 2 we check the viscoelastic and failure algorithms in bending. In example 3 we
analyze failure in a creep-buckling problem, involving the three effects. Finally, we show a
more complex example, the progressive failure of a shell under constant load. This example
is not compared with a benchmark, but the solution looks reasonable; we are presently
looking for well documented experimental results in order to falsify and eventually improve
our numerical model.

Most of the examples chosen are simple, in order to allow comparison with closed
solutions. Nevertheless, the formulation implemented, that allows the representation of
deferred failure, observed in real composite structures, can be extended to more complex real
situations. Additional details may be found in (Oliveira, 1999).

2. FINITE ELEMENT MODEL

We follow the general procedure described by Bathe (1996), but including the effects of
viscoelastic and hygrothermal deformations. As seen in Marques (1994) this leads to an
incremental relation of the form
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respectively.

3. VISCOELASTIC MATERIAL MODELING

In the presence of mechanical and hygrothermal loads, the constitutive relations of the
layer, referred to the principal material directions, may be written as
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where εi(t) are the components of the strain vector { } { }2313122211 2 ,2 ,2 , , εεεεεε =  and σj(t) are

the components of the stress vector { } { }2313122211  , , , , σσσσσσ = , at time t. The components

ε33 and σ33 are not considered. T and H indicate the temperature and moisture content,
respectively.

In Eq. (2), )T ,H ,T(Dij τ−  are the creep functions corresponding to components εi and

σj, )H ,T(iα  are the thermal expansion coefficients and )H ,T(iβ  are the hygroscopic

expansion coefficients, that in general depend on moisture and temperature conditions. *T
and *H  are the temperature and moisture values corresponding to the strain-free state. εi, σj, T



and H are field variables and thus change in general from point to point, even when this
dependence is not explicitly stated.

The viscoelastic strain iε  is formed by two components: one instantaneous e
iε  and one

deferred v
iε , given respectively by
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where p
isq  are the state variables and M is the number of significant terms in the series and

depends on the accuracy desired. It can be shown that these state variables are given by
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This is a system of linear first-order uncoupled differential equations that together with
the initial condition p

isq = 0 at t = 0 allows the determination of the state variables knowing the

stress history. This system may be solved incrementally by finite differences as indicated in
Section 5.

4. FAILURE ANALYSIS

To implement a progressive failure analysis we need criteria that consider the different
failure modes. The criteria of Hashin (1980), Lee (1980 and 1982) and the Maximum Strain
are well known and have been implemented in the code. Being the goal of this work to
analyze viscoelastic progressive failure, we choose a limit criterion in terms of strain, the
Maximum Strain Criterion.

In order to realize the above-mentioned analysis we use a degradation model for the
layers in the cumulative failure stages, that introduces some material stiffness reductions after
the detection of the first ply failure. The analysis ends with the failure of the last ply. The real
degradation process is very complex and still not well understood. We choose a simplified
degradation model, which eliminates terms in the material stiffness matrix, according to the
failure mode. This proceeding has been proposed in some others works (Lee (1982), Tolson
and Zabaras (1991) and Cheung et al. (1995)).

4.1 Maximum Strain Criterion

In the Maximum Strain Criterion the failure takes place when one of the following
conditions, referred to the principal directions of the laminate (directions 1, 2, 3), are satisfied.
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Shortening
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Distortion
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being Xεt the extension limit strain in the direction 1, Xεc the shortening limit strain in the
direction 1, Yεt the extension limit strain in the direction 2, Yεc the shortening limit strain in the
direction 2, SεA the distortion limit strain in the plans 1-2 e 1-3 and SεT the distortion limit
strain in the plan 2-3. These values have to be determined experimentally.

4.2 Layer Degradation Model

To use the Maximum Strain Criterion in progressive failure analysis we consider three
different failure modes: failure in the fiber direction (principal direction 1), failure in the
direction normal to the fiber (principal direction 2) and shear failure. Extension and
shortening failures can occur in both directions 1 and 2.

In the fiber mode the stiffness matrix becomes
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In the matrix mode the corresponding stiffness matrix takes the form
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In the shear failure we must consider different situations. If the shear acts on plans 1-2 or
2-3, we have matrix failure with the reduced stiffness given by Eq. (9). If the shear acts on
plane 1-3, a kind of “delamination” (Oliveira, 1999) occurs in the layer matrix, and the
stiffness corresponding to shears ε13 and ε23 vanish. So, the stiffness matrix is written
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5. NUMERICAL SOLUTION

The numerical solution of the problem formulated in Section 2 is implemented through an
incremental-iterative procedure using Eq. (1). For the solution of the non-linear equilibrium



equations, we can use the Newton-Raphson Method or the Generalized Displacement Control
Method proposed by Yang e Shieh (1990).

In the Newton-Raphson method we have a prescribed load increment. The problem with
this method is the numerical instability that occurs when the determinant of the stiffness
matrix approaches to zero.

In the Generalized Displacement Control Method the increment is fixed by the algorithm.
The load factors for the iterations corresponding to a step k are
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where 1
1λ∆  is the initial load factor that have to be chosen and  indicates line vector.

The generalized displacement control method is specially indicated for post critical
analyses. In viscoelastic analyses, when we are interested in the study of the behavior of the
structure subjected to a constant load, we cannot use this method. In both methods a
displacements convergence criterion is used.

For the determination of the viscoelastic loads in Eq. (1) we must integrate the state
variables in time. Adequate algorithms can be seen in (Creus, 1986), (Masuero and Creus,
1993) and (Marques and Creus, 1994).

6. EXAMPLES

6.1 Viscoelastic Buckling Analysis

A panel of homogeneous and isotropic viscoelastic material with dimensions specified in
Fig. 1 and an initial deflection in the z coordinates given by ( )L/xsen2.0z π=  is subjected to
a load in the x direction.

Figure 1 – Panel geometry

Because of the symmetry in geometry and loading, only half the panel is to be analyzed.
Figure 2 shows the mesh used.

Figure 2 – Mesh, four eight-node elements
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The panel is modeled with ten layers of a viscoelastic material with the following
properties: E0 = 132,30 GPa; E1 = 132,30 GPa; η1 = 1323,0 GPa; θ = 10 sec.

The analytical values of buckling load DP  and deflection b(t) are given by (Creus, 1986)
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Figure 3 shows the comparison between analytical and numerical deflections considering
three different loads. We can observe that the results are fairly close.

Figure 3 - Comparison between analytical and numerical results

6.2 Viscoelastic failure analysis in bending

We consider a panel with the same dimensions used in the first example (see Fig. 1), but
without the initial deflection, analyzed with the same mesh (see Fig. 3). The panel is made of
four layers with equal thickness and fiber orientation.

The material of the layers has the following characteristics: E11 = 132,30 GPa; E22 = 10,75
GPa; G12 = G13 = 5,65 GPa; G23 = 3,40 GPa; ν12 = 0,24; θ = 10 s. The panel is simply
supported and subjected to a uniform load in the z direction.

We perform a failure analysis using the Maximum Strain Criterion with the following
deformation limits

Layers 1 and 4:
Xεt = 1,1431x10-3; Xεc = 1,2811x10-3; Yεt = 4,0698x10-4;
Yεc = 4,0698x10-4; SεA = 1,5363x10-3; SεT = 1,9853x10-3

Layers 2 and 3:
Xεt = 5,7155x10-3; Xεc = 6,4055x10-3; Yεt = 2,0349x10-3;
Yεc = 2,0349x10-3; SεA = 7,6815x10-3; SεT = 9,9265x10-3
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The increase of the deflection in time at the center of the panel, for a load of 75 KPa, is
shown in Fig. 4.

Figure 4– Deflection-time plot for viscoelastic failure analysis in bending

6.3 Viscoelastic failure analysis in buckling

In this example we consider the same panel analyzed in the first example (see Fig. 1).
The following limits of deformation were adopted

Layers 1 and 10:
Xεt = 1,00x10-6; Xεc = 1,00x10-6; Yεt = 4,00x10-7;
Yεc = 4,00x10-7; SεA = 1,50x10-6; SεT = 2,00x10-6

Layers 2 and 9:
Xεt = 2,00x10-6; Xεc = 2,00x10-6; Yεt = 8,00x10-7;
Yεc = 8,00x10-7; SεA = 3,00x10-6; SεT = 4,00x10-6

Layers 3 and 8:
Xεt = 4,00x10-6; Xεc = 4,00x10-6; Yεt = 16,00x10-7;
Yεc = 16,00x10-7; SεA = 6,00x10-6; SεT = 8,00x10-6

Layers 4 and 7:
Xεt = 11,00x10-6; Xεc = 11,00x10-6; Yεt = 30,00x10-7;
Yεc = 30,00x10-7; SεA = 15,00x10-6; SεT = 17,00x10-6

Layers 5 and 6:
Xεt = 16,00x10-6; Xεc = 16,00x10-6; Yεt = 64,00x10-7;
Yεc = 64,00x10-7; SεA = 17,50x10-6; SεT = 18.00x10-6

In Fig. 5 we present the variation of the maximum deflection with time. After the failure
of some layers, the applied load, that is 20N, reaches the value of the viscoelastic buckling
load and the deflections grow rapidly until the final failure.
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Figure 5 – Deflection-time plot for viscoelastic failure analysis in buckling

6.4 Analysis of a spherical shell

A spherical shell is subjected to a pair of loads as shown in Fig. 6. Due to the symmetry
of the problem only one octant of the shell is modeled using a 48 eight-node elements mesh.
The Lee’s failure criterion (Lee, 1982) was used in the analysis.

Figure 6 – Load configuration, geometry and used mesh

The shell has 10 layers of carbon-epoxy oriented at (0/45/90/135/180)s, with the
following properties: E1 =180,00 GPa; E2 = 10,60 GPa; G12 = G13 = G23 = 7,56 GPa; ν12=0,28;
Xt = 1500 MPa; Xc = 1500 MPa; Yt = 40 MPa; Yc = 250 MPa; SA = 68 MPa; ST = 68 MPa

Failure configurations for the 10th layer of the shell are presented together with the failure
loads in Fig. 7. Only the localization of the fail region is shown, without indication of failure
type. It is also shown the variation of the load during the failure process. In this example, that
was run with the Generalized Displacement Control Method we can see the loss of strength of
the structure during the progressive failure process.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 5 10 15 20 25 30 35 40 45

Time (sec )

de
fle

ct
io

n 
(c

m
)

F = 10,0 N
R = 20,0 cm
t = 0,4 cm

F

F

R

z

x

y



Figure 7 – Load-time variation and failure configurations

7. FINAL REMARKS

Time dependent failure due to viscoelastic behavior is an important problem in composite
structures of polymeric matrix. In this paper a numerical procedure for the modeling of this
process is described. The examples show good approximation of analytical results and
validate the procedures for nonlinear geometric, viscoelastic and progressive failure analyses.

Most of the examples are simple, in order to allow comparison with closed solutions.
Nevertheless, the formulation implemented, that allows the representation of deferred failure
observed in real composite structures, is quite general and can be extended to more complex
real situations.
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